
Exploring the State Vector Classification Algorithm
and Its Quantum Equivalent

Ethan Hunt∗, Hieu Nguyen†, and Tu N. Nguyen∗
∗Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA.

†Faculty of Information Technology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam.

Abstract—With the escalating demand for high-performance
artificial intelligence, the domain of quantum machine learning
emerges as a promising avenue for enhancing machine learning
frameworks. This paper introduces two innovative algorithms:
the State Vector Classification Algorithm (SVCA), inspired by
quantum principles, and its hybrid counterpart, the Quantum
State Vector Classification Algorithm (QSVCA). Both algorithms
operate by mapping input data into a classification space and
projecting it onto the basis vector with the largest component.
This projection operation serves as the central for classifying
elements within a dataset and introducing non-linearity without
relying on an activation function. Specifically, the SVCA’s classi-
fication process bears resemblance to measurements in quantum
computing, facilitating a seamless transition of many SVCA
processes into a quantum framework. Furthermore, extensive
evaluation results show that the SVCA performs comparably
with other classical classifiers and notably enhances accuracy
on the tested elliptical dataset. Additionally, the QSVCA serves
as a quantum counterpart to the classical SVCA, consistently
demonstrating strong performance on simple relationships within
datasets and even outperforming the Linear Support Vector
Machine SVM and the Random Forest Classifier on a synthetic
dataset. Both algorithms maintain consistent performance across
multiple datasets, highlighting their reliability.

Index Terms—Quantum machine learning and classifier.

I. INTRODUCTION

Quantum machine learning. The emergence of advanced
AI technologies, such as ChatGPT, has significantly influenced
the applicability of artificial intelligence, driving a need for
faster and more dependable machine learning methodologies.
Quantum machine learning (QML) emerges as a promising
solution to address these needs. By leveraging principles from
quantum mechanics, QML aims to reduce computation times
for complex tasks, making previously unsolvable problems
manageable [1]. QML represents a transformative advance-
ment in artificial intelligence, merging quantum computing
with conventional machine learning techniques. This inte-
gration proves particularly advantageous for processing and
analyzing complex, high-dimensional datasets, where classical
algorithms struggle with scalability and computational inten-
sity. Through quantum parallelism and superposition, QML
algorithms achieve unprecedented data processing speeds.

Classification algorithm. In practical terms, QML encom-
passes the utilization of quantum algorithms for machine
learning tasks [2], exploring both classical and quantum data.
This opens up new avenues for research, including quantum
adaptations of traditional models such as binary classifiers
[3] and neural networks [4], as well as innovative quantum

Fig. 1: The accuracy of the SVCA (99%), Linear SVM
(84%), RBF SVM (97%), Random Forest Classifier (91%),
and Neural Network (96%) on the given dataset.

methods for state or transformation identification. At the core
of QML’s application spectrum are quantum classification al-
gorithms (QCA), which enhance the efficiency of sorting data
into defined categories by exploiting quantum properties like
superposition and entanglement. These algorithms, such as the
quantum classifier for binary classification and the quantum
support vector machine [5], hope to surpass their classical
counterparts in speed and efficiency. However, conflicting
reports on both the theoretical rigor and practical results of
QML algorithms are observed in papers across the field. While
QML methods like the QSVM have been shown to do better on
some datasets [6] often crediting the advantage to the quantum
kernels, it has been shown that while powerful and have the
potential practical QML it has been shown that a more nuanced
approach is needed when evaluating QML methods [7].

Motivation. Classification algorithms stand as fundamental
components of ML, entrusted with the task of discerning the
underlying structure within data by assigning labels to data
points. Traditional algorithms rely on diverse metrics of simi-
larity to identify the classes to which these data points belong.
However, the notion of similarity, when examined within the
framework of inner product spaces, unveils complexities that
transcend mere numerical measures. This motivates us to delve
into the intricate relationship between similarity and class
within the realm of QCA. Through the lens of inner product
spaces, we probe how both traditional and quantum computing
approaches, such as the state vector classification algorithm
(SVCA) and its quantum counterpart, the quantum SVCA
(QSVCA), interpret and harness these concepts. We conduct
empirical studies to assess the efficacy of SVCA compared to
other conventional classifiers (Fig. 1).
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Our contributions. To tackle this issue, we first explore
the notion of similarity within the framework of inner product
spaces between two vector objects, laying the groundwork
for a deeper analysis of class dynamics within a dataset. The
conventional concept of similarity, defined as the inner product
between two vectors, serves as an initial basis for comparing
classes. However, this direct comparison falls short when
scrutinizing the nuanced relationships that emerge within and
across classes. The SVCA conceptualizes classes as orthogonal
entities within a specially defined vector space – known as
the classification space – ensuring clear and distinct class
separations. This orthogonality guarantees that classes remain
distinct and non-overlapping, a departure from traditional
similarity-based classification methods. This perspective is
further extended into the quantum realm by the QSVCA, lever-
aging quantum mechanics to project data vectors onto a high-
dimensional classification space with enhanced efficiency. The
main contributions of this paper are as follows:

• Development of novel algorithms: We introduce 1) the
state vector classification algorithm (SVCA), which maps
input data into a classification space and projects it onto the
basis vector with the largest component, introducing non-
linearity without the need for an activation function. We also
extend the SVCA into the quantum realm, developing the
quantum SVCA (QSVCA), leveraging quantum mechanics
to efficiently project data vectors onto a high-dimensional
classification space.

• Theoretical analysis: In analysis, we illustrate that both
SVCA and QSVCA are capable of representing a linearly
separable binary relationship in a dataset. This, combined
with its intrinsic ability to handle nonlinear datasets, posi-
tions it as a versatile classifier for general purposes.

• Assessment: The evaluation shows that SVCA performed
comparably with, and sometimes outperformed, traditional
classifiers (e.g., SVM, random forest, neural networks),
especially with non-linearly separable datasets like elliptical
ones. QSVCA consistently performed well across multiple
datasets, showcasing its reliability among QML algorithms.
Across various synthetic and real datasets, both SVCA
and QSVCA demonstrated effectiveness and robustness in
classifying complex data structures. Specific instances high-
light QSVCA’s close approximation to classical classifiers,
indicating promising practical applications.

The rest of this paper is structured as follows: In §II, we
present an overview of QML algorithms and explore potential
approaches to quantum-inspired classification. In §III, we
delve into the theoretical foundations of SVCA, highlighting
its potential to redefine classification in the quantum com-
puting era. In §IV, we introduce and analyze the QSVCA
algorithms’ capability to examine the relationship between
similarity and class, contributing to the broader discourse
on integrating quantum computing with ML and paving the
way for revolutionary advancements in data analysis and
classification. Finally, we conclude with key remarks and
propose potential future research directions in §VI.

II. PRELIMINARY

With the surge in research interest, both in academia and
industry, driven by the success of major artificial intelligence
platforms, the demand for faster and more accurate machine
learning models is escalating. To meet these demands, explo-
ration into quantum-inspired machine learning algorithms and
quantum/hybrid machine learning algorithms has intensified.
While the latter can be easily validated both theoretically
and empirically, the former often relies solely on theoretical
evidence or small toy datasets for testing.

A. A Novel Approach to Quantum-Inspired Classification

The SVCA offers a new perspective on the fundamental
query: “How do we define and measure the similarity between
classes in a dataset?” Traditionally, similarity assessment re-
lies on the inner product between vectors. By treating each
vector as a representation of a class in our data, the inner
product helps gauge the closeness between two classes. In
this discussion, we delve into the nuanced question, “What
is the relationship between similarity and class?” To explore
this, we initially examine similarity within the framework of
inner product spaces between two arbitrary vector objects o1
and o2: ⟨o1|o2⟩ = o⃗1 · o⃗2. Pivoting from abstract objects
to concrete representations, let us consider these vectors as
distinct classes within a dataset, thus defining a set of classes
C ≡ {ci|i ∈ [0, |C|]}.

It is imperative to recognize that the relationship between a
class and its elements diverges significantly. For example, if we
are to classify a dataset into classes A and B, elements within
one class might share similarities with elements from another
without implying inherent class similarity. For instance, the
vector (2, 1) in class B – a linear amalgamation of vectors
(0, 1) from class A and (1, 0) from class B – highlights this.
Despite the zero similarity between vectors (1, 0) and (0, 1),
vector (2, 1) intertwines both. Consequently, elements of Class
B display divergent similarity scores to an element of class A,
obscuring a clear relationship without additional data.

B. The Classification Space RC

Departing from conventional classification algorithms, the
SVCA introduces a groundbreaking concept where classes are
viewed as orthogonal entities within a specialized vector space
called the Classification Space. This conceptual departure
necessitates that any two classes are orthogonal, expressed
as ⟨c1|c2⟩ = c⃗1 · c⃗2 = 0. Despite potential similarities
among classes, this orthogonality principle forms the basis
for representing data within this unique vector space. For a
dataset D encompassing c distinct classes, we establish the
presence of a linear mapping Td⃗ ∈ RC : d⃗ ∈ D, enabling
the transformation of any data vector onto this classification
dimension. This provides a geometric interpretation to the
resulting vector in the Classification Space, where the relative
magnitudes of each vector convey the score associated with
the corresponding class.
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C. Converting Measurements into Classes

Transitioning our discussion into the realm of Quantum
Mechanics and the inherent computations within our Classi-
fication Space, we assign each class a natural basis vector.
In a classification space R2, for instance, the first class may
be denoted by the basis (1, 0) and the second by (0, 1). In
figure 2 a visual example of transformation to the classification
space R2 is given. Our objective is to map our data vector
x⃗n× 1 into RC using the matrix Tm× n, resulting in the
prediction vector p⃗m× 1 = Tm× nx⃗n×1. With p⃗ = |p⃗⟩ at
our disposal, and acknowledging ⟨v1|v2⟩ = v⃗1·v⃗2, we compute
⟨ei|p⃗⟩ =

∑
jαj⟨ej |p⃗⟩ for each natural basis vector ei. Due to

the orthogonality of the basis vectors, ⟨ej |p⃗⟩ = 0 for i ̸= k.

Unlike the stochastic nature of quantum measurements, we
deterministically select the basis with the highest value for
⟨ei|p⃗⟩. This selection collapses our measurement to that basis
vector, effectively classifying x⃗n×1 as the corresponding class.
Since the process of choosing the class from the prediction
vector is akin to the non-linear measurement in quantum
mechanics, the SVCA does not require the use of activa-
tion functions like SoftMax or ReLu to express non-linear
relationships (see figure 3 for an example). Thus, SVCA’s
ambition is to discover the optimal transformation Tm×n for
data classification, which can be envisioned as transforming a
vector v⃗ ∈ Rn → p⃗ ∈ RC determining classes based on the
hyperplane

∑C
1 pi = 0.

III. THE CLASSICAL SVCA

The State Vector Classification Algorithm (SVCA) stands
out as a versatile classification tool capable of effectively
handling complex datasets while requiring only a fraction of
the training data typically needed. This remarkable capability
is achieved through a process where the SVCA projects the
input vector onto a basis vector corresponding to a specific
classification dimension. Conceptually, SVCA bears some
resemblance to a single-layer neural network, where the output
dimension corresponds to the number of class labels. However,
there are several key distinctions that set SVCA apart and
contribute to its enhanced ability to generalize data compared
to a typical single-layer neural network. Moreover, these
distinctions facilitate the creation of an equivalent quantum
model with relative ease.

A. SVCA Transformation and Dimensions

Given a matrix W and an input vector x⃗, with the dimen-
sions defined as: dim(W ) = m×n, dim(x⃗) = n×1, dim(p⃗) =
m× 1, |C| = m. Then, the prediction vector p⃗ is calculated as
follows:

p⃗ =Wx⃗ =

n∑
i=1

(xiw⃗i) (1)

This can also be expressed using the dot product and
orthonormal basis vectors ej as:

p⃗ =

m∑
j=1

(w⃗j · x⃗)êj =
m∑
j=1

⟨w⃗j |x⃗⟩|ej⟩ (2)

x2

x1

p

c2

c1

p'
Wp=p'

Fig. 2: An example of a data point p being mapped to the
classification space by W.

B. SVCA Classification Process

The classification process is described by identifying the
basis vector ej that corresponds to the maximum coefficient
in the prediction vector p⃗:

arg maxp⃗(êj) = ⟨ej |p⃗⟩ (3)

This step classifies the input vector x⃗ into the class associ-
ated with the basis vector ej that has the largest projection
coefficient in p⃗. We put forth the following algorithm for
defining the classification process in the SVCA.

Algorithm 1 Prediction and Classification Process

Require: Matrix W with dimensions m × n, input vector x⃗
with dimensions n× 1

Ensure: Classification of x⃗ into class associated with basis
vector êj

1: p⃗←Wx⃗ =
∑n

i=1 xiw⃗i

2: ŷ ← arg maxp⃗(êj) = ⟨ej |p⃗⟩
3: return ŷ

C. SVCA Training process

The objective of training the SVCA is to determine the
optimal transformation for our dataset. To achieve this, we
employ the following approach for a given training sample x⃗:
1) First, calculate the prediction vector p⃗ =Wx⃗.
2) Next, compute ŷ = arg maxp⃗(êj).
3) Compare the expected versus observed class |ŷ − y|.
4) Lastly, update the transformation matrix for the next epoch

iteration k, with the transformation Ŵk+1 = ∇Lx⃗η(k) +
Ŵ , where Lx⃗ is the loss for input vector x⃗ and η(k) is the
learning rate at iteration k.

This process is repeated for each sample in the training set
per epoch iteration k. The learning rate schedule is defined by
the function η(k). To compute the gradient ∇Lx⃗, we operate
on its row vectors as p⃗ =Wx⃗. Thus, the gradient is computed
as∇Lx⃗ =

∑ ∂Li

∂w⃗i
where ∂Li

∂w⃗i
= x⃗ for simplification. To update

the transformations per row vector, we use:

ŵ′
i =

{
− ∂L⃗i

∂w⃗i
η(k) + ŵi : y ̸= êj

∂L⃗i

∂w⃗i
η(k) + ŵi : y = êj

(4)
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Algorithm 2 SVCA Training Algorithm

1: p⃗←Wx⃗ and ŷ ← arg maxp⃗(êj)
2: if P ̸= y then
3: for i = 0 to len(W )− 1 do
4: if i ̸= y then
5: Wi ← −η(k) · x⃗+Wi

6: else
7: Wi ← η(k) · x⃗+Wi

8: end if
9: end for

10: end if
11: return W

This represents the update rule for the transformation ma-
trix’s row vectors, adjusting for the learning rate and the
difference between expected and observed classes. Putting all
this together, we provide the following implementation of the
learning algorithm for the SVCA.

D. Linear Data and the SVCA

The SVCA, akin to the classical perceptron and SVM,
can express linear relationships. However, unlike their default
versions, it can effectively capture non-linear relationships.
In this section, we’ll explore how a linear relationship is
expressed in an SVCA transformation T , realized through a
weight matrix.

Theorem 1. Consider the dataset X = Rn consisting of
vectors x⃗ ∈ Rn, partitioned into two sets A and B based on
some hyperplane in Rn. Then there exists a 2× n real value
matrix W where the values of entries in the vector Wx⃗ = p⃗
in R2 correspond to the ”score” a given vector x⃗ has with
a given class. Such that for every vector v⃗ in some arbitrary
class C, the value of the entry pC corresponding to class C
in the prediction vector Wv⃗ = p⃗ is always greater than the
value of the entry p¬C corresponding to class ¬C.

Proof. Let the data set X = Rn whose elements are vectors
x⃗ ∈ Rn be partitioned into two sets A and B based on the
hyperplane H in Rn. This hyperplane H can be represented
by the equation:

m⃗⊺x⃗+ b = 0

where:
• m⃗ ∈ Rn is a weight vector normal to the hyperplane,
• x⃗ ∈ Rn is an input feature vector,
• b ∈ R is a bias term,
• v⃗⊺ denotes the transpose operation, making m⃗⊺x⃗ a dot

product between m⃗ and x⃗.
For a given vector x⃗, its classification is determined as follows:

• If m⃗⊺x⃗+ b ≥ 0, then x⃗ is classified into class A,
• If m⃗⊺x⃗+ b < 0, then x⃗ is classified into class B.
Let the vector z⃗ be orthogonal to any vector x⃗ which is an

element of H . It follows then that this can be expressed as:

z⃗ · x⃗ = 0 : z⃗ · x⃗ = m⃗ · x⃗+ b

Let the vector v⃗ = (1,−1). Let the linear transformation U
expressed as a 2×n matrix transform any vector x⃗ ∈ Rn into
a vector p⃗ ∈ R2. Consider that:

arg maxp⃗(êj) ≡

{
e⃗1 : v⃗ · p⃗ ≥ 0

e⃗2 : v⃗ · p⃗ ≤ 0

which implies that identifying the basis vector that corresponds
to the maximum coefficient can be found using the linear
functional v⃗ · p⃗ and a threshold of zero. Therefore it is possible
to preserve the relationship between the two classes of vectors
A and B be defined by the hyperplane H when applying the
linear transformation U by solving for the entries of U that
satisfy the following relationship:

v⃗ · Ux⃗ = z⃗ · x⃗

This can be rewritten by applying the property that a⃗ · b⃗ = a⃗⊺b⃗
to get the expression:

(v⃗⊺U)
⊺ · x⃗ = z⃗ · x⃗

Since both sides of the equation are expressed as the dot
product between x⃗ and some other vector in Rn the two
vectors must be equal. This can then be expressed by the
following equation:

(v⃗⊺U)
⊺
= z⃗

Therefore solving for the entries of the matrix U that satisfy
the equation (v⃗⊺U)

⊺ ·x⃗ = 0 will yield the linear transformation
W = U . The solution W must exist since z⃗ exists and satisfies
the equation (v⃗⊺U)

⊺
= z⃗.

Consider that for any vector u⃗ the value of z⃗ · u⃗ = f(u⃗) is
also given by the equation f(u⃗) = v⃗ ·Wu⃗. For every vector
x⃗ ̸∈ H in the dataset, consider a corresponding point y⃗, such
that y⃗ is the reflection of x⃗ across the hyperplane, ensuring
x⃗ is classified differently than y⃗. Let the vector h⃗ lying on
the discriminating hyperplane between x⃗ and y⃗, governed by
the function f that delineates the separation criterion: f(y⃗) <
f (⃗h) < f(x⃗). It follows then that since z⃗ · u⃗ = f(u⃗) = v⃗ ·Wu⃗
the W preserves the relationship of the hyperplane. Thus the
values of entries in the vector Wx⃗ = p⃗ in R2 correspond to
the ”score” a given vector x⃗ has with a given class. Such that
for every vector u⃗ in some arbitrary class C, the value of the
entry pC corresponding to class C in the prediction vector
Wu⃗ = p⃗ is always greater than the value of the entry p¬C

corresponding to class ¬C.

Based on Theorem 1, we observe that the SVCA can
represent any binary relationship that is linearly separable.
Unlike the perceptron or SVM, the SVCA can handle clas-
sification tasks with more than two classes without needing
additional modifications. This is because the SVCA encodes
the linear relationship(s) of the dataset into a new space, where
separability depends on the transformed vector coordinates.
This differs from the classification approach of the perceptron,
which relies on a threshold of some linear functional.
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Fig. 3: Demonstrates the accuracy of various classifiers on
a specific elliptical dataset: SVCA (100%), Linear SVM
(44%), RBF SVM (56%), Random Forest Classifier (66%),
and Neural Network (58%).

E. Results for the SVCA

While the SVCA can theoretically express linear relation-
ships, in practice datasets often have noise in them making
them more difficult to classify as well as not being restricted
to only linear relationships. As such it is important to test
the SVCA’s ability to generalize various types of relationships
across multiple types of data in addition to comparing its
performance against other well studies techniques.

• On the Elliptical Datasets. One example of a nonlinear
dataset involves classes described by inner and outer el-
lipses. This relationship type can be challenging to classify
without specialized kernels to model it effectively. Utilizing
the scikit-learn’s method [8], we generated such datasets
and then we extended the feature space by appending a
new feature which is a polynomial of the original features.
Finally we compared the performance of multiple classifiers
against SVCA, as shown in Figure 3.

• On the Scikit-Learn Toy Datasets. Evaluating the validity
of a machine learning paradigm often involves testing its
performance on well-studied datasets. To accomplish this,
we utilize several toy datasets from the scikit-learn library,
encompassing a wide variety of classification scenarios.
In Figure 4(a), we present the results of SVCA on these
datasets. All datasets undergo the same preprocessing meth-
ods to highlight the consistency of SVCA performance with-
out relying on preprocessing measures to enhance accuracy.

• Comparisons across Synthetic Binary Datasets. To assess
the performance of SVCA against well-established machine
learning methods, we compared the average performance of
the Scikit-Learn implementations of SVCA, Linear SVM,
RBF SVM, Random Forest Classifier, and a Neural Network
across 1000 synthetic datasets. These datasets were gener-
ated using the make classification function also from Scikit-
Learn. The results are depicted in Figure 4(b), demonstrating
that SVCA performed comparably to the other methods.
Across a wide range of random binary classification tasks,

(a) (b)

Fig. 4: a) Presents the SVCA’s average accuracy across
multiple Scikit-Learn datasets, including Iris (90.66%), Wine
(90.72%), Breast Cancer (94.76%), and Digit (90.56%) [8],
based on 100 instances of a training-test split of 30:70 and b)
presents the average accuracy of various classifiers, including
SVCA (89%), Linear SVM (80%), RBF SVM (88%), Random
Forest Classifier (88%), and Neural Network (92%), across
1000 synthetic binary datasets (training-test split of 75:25).

SVCA consistently delivered scores on par with the other
listed algorithms.

IV. TOWARDS THE QUANTUM SVCA

Given that the classical SVCA eschews the use of an activa-
tion function for classification tasks, opting instead for select-
ing the maximum value of an entry in a classification space –
a concept reminiscent of measurements in quantum mechanics
– it stands out as a promising candidate for implementation
on quantum machines. This characteristic, coupled with the
inherent representation of quantum states via matrix-vector
multiplication, facilitates an intuitive integration of SVCA
into quantum computing frameworks. Notably, a quantum
SVCA offers the potential to combine novel quantum machine
learning techniques with a robust machine learning paradigm,
leveraging the inherent advantages of quantum computing.
A. The Quantum Data Encoding

The initial step in implementing SVCA on a quantum com-
puter involves selecting a suitable Quantum Data Encoding
method to represent the input vector and weight matrix. We
observed that many encoding methods, designed for algo-
rithms testable on near-term quantum computers, encounter
difficulties in properly expressing vectors with entries from a
real-number field. This observation is supported by Proposition
4.2 in [9], where the proposed encoding fails to represent the
additive and multiplicative identity elements of a field. Such
issues are non-trivial and can potentially impede the conver-
gence of the QML algorithm to an optimal representation or
lead to a representation that inadequately captures the dataset’s
underlying relationships.

To illustrate the impact of encoding schemes on representa-
tion, we introduce a simplified encoding scheme. For a given
feature vector x⃗ ∈ R2 within a dataset, where the first feature
is denoted as a and the second feature as b, we define the
toy encoding method as follows: the amplitudes of a two-
dimensional quantum state |ψ⟩ = α|0⟩ + β|1⟩ represent the
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values of the features of x⃗, where α = a
a+b and β = b

a+b .
This method vividly demonstrates how encoding influences
dataset relationship representation.

Consider a dataset X comprising two-dimensional vectors,
where a feature may lack correlation with a given class.
In classical approaches, such features are typically assigned
weights close to zero post-training to prevent undue influence
on classification outcomes. However, the toy encoding scheme
struggles to express null-valued entries, potentially causing
classification errors. This limitation arises from the periodic
nature of quantum state amplitudes during training, which can
lead to “over-correction” of weight values. For example, when
evolving amplitudes in |ψ⟩ to represent weighted features,
encountering an irrelevant feature necessitates nullification of
its effect, ideally setting its value close to zero. However,
achieving this nullification is impossible in a two-dimensional
Hilbert space. When one state’s amplitude approaches zero,
the other necessarily approaches one, causing all informative
feature values to become identical and impairing discrimina-
tion between different values of the same feature.

Consider a scenario during training where it is noted that the
value α for feature one is too large, prompting its reduction.
However, decreasing α results in an increase in β, creating
a situation where mitigating the influence of one feature
inadvertently boosts another’s weight. While the outlined toy
encoding scheme is inefficient, it effectively highlights the
consequences of being unable to express all real number field
values. To address these potential issues in encoding vectors
with real-valued entries, this paper employs a method wherein
one qubit is allocated for each entry in the input vector and
weight matrix. This approach ensures the independence of
each entry, effectively mitigating the aforementioned chal-
lenges. Specifically, the values of each entry are encoded
as amplitudes of the |1⟩ state in the corresponding qubit,
employing a normalization function f .

|xi⟩ = (1− f(xi))|0⟩+ f(xi)|1⟩ (4)

Given that the amplitudes of each qubit are independent of
one another, each qubit’s amplitude for the |1⟩ state falls within
the range [0, 1]. Conceptually, this process normalizes each
entry onto the interval [0, 1]. To ensure proper representation
on the quantum circuit, normalization is necessary. In this
paper, we adopt the following normalization approach.

x′ = [
x1
∥x∥

, . . . ,
xn
∥x∥

] : ∥x∥ =
n∑

i=1

|xi| (5)

B. The Quantum Transformation Unitary UT

The subsequent crucial step in constructing a quantum
SVCA involves creating the Unitary UT , which operates on
the input state of the selected feature map to implement
the transformation T on the quantum circuit. One approach,
using the encoding scheme outlined in subsection IV-A, is to
employ multiple swap tests [10] without measuring the control

between a copy of the input state |x⟩ and a row vector of the
weight matrix |wi⟩. This is expressed as the following state:

1

2
(|0⟩ (|x⟩ |wi⟩+ |wi⟩ |x⟩) + |1⟩ (|x⟩ |wi⟩ − |wi⟩ |x⟩)) (6)

Using the following representation of the classical SVCA
we can see that Wx⃗ can be represented as the linear combi-
nation of the inner products between the input vector x⃗ and a
corresponding row vector w⃗i as seen in Equation 2 in III-A:

p⃗ =

m∑
j=1

(w⃗j · x⃗)êj =
m∑
j=1

⟨w⃗j |x⃗⟩|ej⟩ (2)

The value of ⟨w⃗j |x⃗⟩ is applied to the control qubit of the
swap operation which corresponds to a basis vector |ej⟩ ∈ RC .
Since the classical swap test gives the probability of the jth
control qubit being in the state |0⟩ is given by

P (|ej⟩ = |0⟩) =
1

2
+

1

2
|⟨w⃗j |x⃗⟩|2 (8)

The probability of the control qubit being in a particular
state describes some form of inner product between the input
and row vectors. Consequently, the state represented by the
tensor of the control qubits corresponds to a prediction vector
|p⟩ ∈ HC , which serves as the quantum equivalent of p⃗ ∈ RC .

C. The Classifier Unitary Us

The computation of ŷ = arg max|p⟩(|ej⟩) is feasible by
measuring instances obtained from sampling the quantum
state of the corresponding swap test, with an additive error
of O( 1

ε2 ) samples [11]. Subsequently, comparing the inner
product estimates from each swap test facilitates prediction.
However, as these estimates are derived from the squares
of inner-product values, the distinction between negative and
positive values is eliminated. This issue can be rectified by
implementing relative comparison via entanglement between
qubits associated with the classification space’s basis vectors.

Consider two independent swap tests A and B, where the
states represent the controlled qubits’ state for each test, de-
noted as |ϕ⟩A and |φ⟩B respectively. Let PA and PB represent
the probabilities of the control qubit in swap tests A and B
being in the state |1⟩, corresponding to basis vectors |eA⟩
and |eB⟩ respectively. We can define a unitary operator that,
when applied to the state |ϕ⟩A|φ⟩B , divides the probabilities
of measuring the two qubits in either |11⟩AB or |00⟩AB by
half and adds them to the probability of measuring the two
qubits in |10⟩AB or |01⟩AB . This renders the measured classes
mutually exclusive, allowing only one control qubit to be in
the |1⟩ state at a time.

This concept can be extended to the scenario with m classes
by constructing a series of controlled unitaries. With the use
of auxiliary qubits, these unitaries enable a one-hot encoding
scheme of the classes, akin to how the index with the maxi-
mum value is chosen in the classical SVCA for classification
tasks. For any initial state |ψ⟩|0⟩ =

∑N−1
j = 0aj |j⟩|0⟩,

where ax|x⟩|0⟩ represents a specific basis vector and S

6



denotes a subset of basis vectors, each equal to a power
of 2, there exists a Unitary transformation U . U |ψ⟩|0⟩ =∑N−1

j ̸= xai|j⟩|0⟩+ 1√
|S|

∑
k∈S ak|k⟩|1⟩.

Lemma 1. Given a integer n ≥ 2 and the state |0⟩⊗n there
exists the Unitary US |0⟩⊗n = 1√

|S|

∑
k∈S ak|k⟩ such that

S = { |i⟩ ∈ S |i ∧ j ∈ R,∃j < n : 2j = i}

Proof. Given the integer n ≥ 2 and the state |Ψ0⟩ = |0⟩⊗n ∈
H⊗n assume that the unitary US takes the state |0⟩⊗n to

1√
|S|

∑
k∈S ak|k⟩. Let |Ψt⟩ denote the state described by

the tth iteration in the sequence operations on the starting
state. Let the |ψl⟩ denote the subspace for the lth two-
dimensional Hilbert space of the total Hilbert space H⊗n. Let
US = U2U1(Θ) where Θ is a set of angles. Consider the
following unitary matrix:

U1(Θ) = U(Θ)1bU(Θ)1a

U(Θ)1a =

Ry(θ0)0 ⊗
n−1⊗
j=1

Ij


U1b(Θ) =

n−2∏
k=1

Ck−1Ry(θk)k ⊗
⊗

j /∈{k−1,k}

Ij


Such that |Ψ1⟩ = U1(Θ)|Ψ0⟩ which can be expressed as some
superposition of the basis vectors:

{|0⟩⊗n, |1⟩|0⟩⊗n−1, |11⟩|0⟩⊗n−2, . . . , |1⟩⊗n−1|0⟩}

The result of applying U1 can be represented by the equation:

|Ψ1⟩ = U1|0⟩⊗n =

n−1∑
k=1

ak

∣∣∣∣∣∣2n − 1−
k∑

j=0

2j

〉

This expression denotes the transformation of the initial
state into a superposition of states with each subsequent state
having one more qubit flipped to |1⟩ than the previous, up to
n − 2 flips, represented in a reversed order. Let m = n − 2
and consider the following unitary matrix:

U2(Θ) = U(Θ)2bU(Θ)2a

U2a =

n−2∏
k=0

Cm−kXm−k+1 ⊗
⊗

j /∈{m−k,m−k+1}

Ij


U2b =

X0 ⊗
n−1⊗
j=1

Ij


Such that |Ψ2⟩ = U2|Ψ1⟩ which can be expressed as some

superposition of the basis vectors in S = { |i⟩ ∈ S |i ∧ j ∈
R,∃j < n : 2j = i}. This can be expressed as:

|Ψ2⟩ = U2|Ψ1⟩ =
n−1∑
k=0

ak|2k⟩

The state |Ψ2n−2⟩ ∈ H⊗n can described by the recursive
equation f where x = n:

f(x) = cos

(
θn−1−x

2

)
|2n−1−x⟩+ sin

(
θn−1−x

2

)
f(x− 1)

f(0) = |2n−1⟩

Consider that if |Ψ2n−2⟩ was in a state of equal supposition
of the coefficients in f can be rewritten as follows:

f(x) =

√
1

x
|2n−1−x⟩+

√
x− 1

x
f(x− 1)

f(0) = |2n−1⟩

such that θk = 2 ∗ cos−1
(√

1
k

)
and P (⟨2k|Ψ2⟩) = 1

n .

Then let the set Θ = {θk|
√

1
k = cos

(
θk
2

)
}. It follows that

|Ψ2⟩ = 1√
|S|

∑
k∈S ak|k⟩. Since US |Ψ0⟩ = U2U1(Θ) =

|Ψ2⟩ = 1√
|S|

∑
k∈S ak|k⟩ and the choice of n ≥ 2 is

arbitrary, therefore there exists the Unitary matrix US for any
integer n ≥ 2 such that US |0⟩⊗n = 1√

|S|

∑
k∈S ak|k⟩ where

S = { |i⟩ ∈ S |i ∧ j ∈ R,∃j < n : 2j = i}.

With the classification unitary defined, given a set of
auxiliary qubits denoted as QA in combination with the
qubits corresponding to the basis vectors in the classifica-
tion space QC , every basis vector |j⟩ in the Hilbert space
of the classification qubits QC , which is not a power of
2, can be mapped to the state |j⟩C |j⟩A by some unitary
Uj : Uj |j⟩C |0...0⟩A = |j⟩C |j⟩A. Subsequently, applying the
unitary Uj→0 to the state |j⟩C |j⟩A results in |0...0⟩C |j⟩A,
enabling the application of a controlled version of US on the
Hilbert space of the classification qubits whenever the state
vector of the auxiliary qubits is |j⟩. Repeating this process
for each of the possible bias states of |j⟩ ensures that only
basis states corresponding to powers of 2 are observed when
measuring qubits in QC .

D. Quantum SVCA

With the necessary groundwork laid, we can proceed to
define one possible method of implementing SVCA on a
quantum computer. This implementation utilizes the modified
swap test and multiple one-hot basis encoding unitary US to
execute the algorithm on a quantum circuit.

E. The Cost of Implementing the QSVCA

The cost of QSVCA in terms of circuit depth and breadth
depends on the encoding scheme employed. Broadly speaking,
we can associate the cost of QSVCA as a function of variables
n (size of the input vector) and m (number of classes).
• Let E(n) represent the function outputting the number of

qubits required to encode the input vector.
• Let S(n) represent the function outputting the number of

controlled swap operations needed to compute the product
of a row vector in the weight matrix with the input vector.
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Algorithm 3 Quantum SVSC (QSVCA)

Require: Number of input qubits n, number of output qubits
m, input vector x⃗, weight matrix W

Ensure: Quantum Circuit for the classification operation
1: Initialize an array of m quantum registers RQ with 2n

qubits each, output quantum register O with m qubits,
and auxiliary quantum register A with m qubits

2: Prepare the m copies of the state |x⟩ representing the input
vector

3: for each row vector w⃗i in W do
4: Prepare the state |wi⟩A representing the i-th row vector
5: end for
6: for each row vector w⃗i in W do
7: Perform a controlled swap that creates the state:

1

2
(|0⟩O (|x⟩ |wi⟩+ |wi⟩ |x⟩) + |1⟩O (|x⟩ |wi⟩ − |wi⟩ |x⟩))

8: end for
9: Define S ← {|i⟩|i ∧ j ∈ R,∃j < n : 2j = i}

10: Define function f(i) to return a control index for a
quantum state not in S

11: for |i⟩O ∈ S do
12: Apply a controlled Not Gate to the ith auxiliary qubit

when the output register is in the state |i⟩O
13: Apply the controlled Unitary CUi(Ai, O) to |i⟩O |1⟩A

to |0...0⟩O |1⟩Ai

14: Apply Not gate to the ith auxiliary qubit
15: Apply controlled ME gate CUS(Ai, O)
16: Apply Not gate to the ith auxiliary qubit
17: end for
18: Measure the output register O and store the result
19: return the measurement result

• Let A(m) represent the function outputting the number
of qubits needed for the prediction vector to be properly
created.

• Let B(m) represent the function outputting the number of
operations needed to compute the prediction vector.

The number of qubits needed for an implementation is given
by m(2E(n)+1)+A(m). For the implementation in the paper,
we need 2m(n + 1) qubits. The total depth of the circuit is
given by the expression S(n)+B(m). For the implementation
in this paper, the depth of the circuit is given by the expression
n ·m+2m+3. Therefore it follows that the number of qubits
required grows by the order of O(n ·m) and the depth can be
expressed as O(m ∗n). This means that the number of qubits
and circuit depth grows linearly with the number of features
as a function of either m or n.

V. QSVCA RESULTS

With the formulation of the QSVCA complete, it is easy to
see that the given representation QSVCA corresponds to its
classical counterpart with differing only in that the weighted
sum operations in the QSVCA are returned via a relative
probability distribution instead of explicitly being compared.

Fig. 5: The results of the QSVCA transformation on the Linear
Dataset. The black data points represent the points in the
Linear Dataset that are misclassified by the QSVCA.

It is still important to test the QSVCA as potential issues may
still be present that are not immediately obvious. To confirm
that the QSVCA correctly encompasses the classification pro-
cess defined by the classical SVCA we tested the QSVCA on
several different data sets.

A. QSVCA Results on Linearly Separable Datasets

We conducted a test on a simple toy linear dataset to
evaluate the QSVCA’s capability in representing linear rela-
tionships, a task easily handled by the classical SVCA. In
Figure 5, the transformation of the dataset by the weight
matrix is depicted. While the SVCA appears to capture the
essence of the relationship, there are small sections where
it misclassifies points. This discrepancy may stem from the
choice of normalization used during data encoding onto the
quantum circuit. It suggests that the quantum circuit is highly
sensitive to minor changes in data encoding, highlighting the
importance of preprocessing for achieving satisfactory results.

Furthermore, in Figure 6(a), we illustrate how well the
weight matrix classifies the linear dataset at any given iter-
ation. This visualization provides insights into the model’s
improvement after each training epoch, offering valuable in-
formation about the effectiveness of the training methods.

B. QSVCA Results on the Breast Cancer Dataset

In addition to testing on a linear dataset, we evaluate
the QSVCA on the Scikit-Learn Breast Cancer Dataset [8],
which consists of 30-dimensional input vectors. To mitigate
the computational cost of simulating the QSVCA, we apply
PCA to the dataset and selected the two most highly corre-
lated features. Despite the reduced feature set, the algorithm
performed admirably, demonstrating that the QSVCA operates
as expected.
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(a) (b) (c)

Fig. 6: a) Demonstrates the precise classification capability of the QSVCA transformation at each iteration, achieving a maximum
accuracy of 96.4% on the linear dataset and b) illustrates the effectiveness of the QSVCA transformation in classifying the
Breast Cancer Dataset, achieving a maximum accuracy of 86.3% and c) the QSVCA Results on the Synthetic Dataset seen in
fig. 1 with a finally accuracy of 92.0%.

C. Other QSVCA Results

In addition to the previous performances of the QSVCA, we
show how well the QSVCA performs compared to the SVCA
on the dataset in Figure 1, using the same test and training
data for both. The result of the QSVCA is shown in Figure
6(c), where it achieves a 92.0% accuracy. This is only a 7%
difference between the quantum and the classical version of
the SVCA. In addition, the QSVCA performs 1% better the
Random Forest classifier and 8% better than the Linear SVM
on the same training and testing data.

D. QSVCA Results Overview

Based on the results of the QSVCA on the tested datasets,
we observe that it can learn both complex and simple rela-
tionships within the dataset, achieving over 85% accuracy on
the datasets tested. While the results of the classical SVCA
are slightly higher compared to those of the QSVCA, we
observe that the QSVCA still converges onto a model that
decently approximates the given relationship. The fact that the
QSVCA can achieve an accuracy that is less than 9% lower
than the classical counterpart suggests that further research
into optimizing the feature scaling and learning rates for
encoding the entries of a given data point would help close
the performance gap.

VI. CONCLUSION AND FUTURE WORKS

As the demand for new and more efficient machine learning
algorithms increases, leveraging the unique computational
aspects of quantum computers holds promise for potential
performance improvements. While much of the work in QML
is theoretical, as many mathematical advantages require more
advanced quantum hardware, attempts based on exploring
ansatz or variational circuits (like the VQC) [3], [12] have not
consistently outperformed classical counterparts. In response
to the limitations of existing quantum classifiers, we proposed
the SVCA and its quantum equivalent, the QSVCA, aiming
to develop a well-motivated quantum classifier that behaves
consistently across various classification tasks. We benchmark
the proposed algorithms from two main perspectives: 1) Mea-
sure how well the algorithm individually performs across a

variety of datasets 2) Compare the algorithm against classical
peers on the same data set using the same testing training
split. The evaluation results demonstrate the high potential and
promising outcomes of both SVCA and QSVCA.
• Our observations indicate that the QSVCA is functioning as

intended and, with further refinement, should be competitive
with its classical counterpart. This suggests the potential for
appending additional quantum routines, such as new feature
maps, to enhance performance beyond classical methods.

• Unlike some QML classifiers that perform well on specific
datasets but struggle with others, the QSVCA demonstrates
consistency. It successfully captures linear relationships and
performs well on datasets with few features, such as the
Breast Cancer dataset.

• The SVCA and its quantum counterpart offer a novel
approach to classification tasks in machine learning. By
leveraging classical analogies to create a quantum-inside
machine learning algorithm, the SVCA can be readily
translated onto a quantum circuit, making the QSVCA a
reliable quantum classification algorithm akin to those used
in classical machine learning.

Future work. This work lays the foundation for further re-
search on quantum classifiers based on the SVCA and similar
algorithms. We look forward to extending future research
topics that hinge on the QML problem with the following
directions: 1) using different encoding methods to help better
preserve the underlying relationship in a real number-based
metric space, 2) extending the QSVCA or SVCA to allow
for the integration of kernels, and 3) testing the SVCA and
QSVCA on a wider range of datasets.

VII. THE STATE-OF-THE-ART

Given the nascent nature of QML, numerous ideas and
proposals have emerged to address similar problems. Conse-
quently, there exists a wide array of methods for evaluating
the performance of these models, making it challenging to
assert their efficiency definitively. However, a recent survey
[13] of over 5,000 QML papers provides valuable insights.
The survey presents results for several QML algorithms on
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TABLE I: Quantum algorithms and their accuracy.

Dataset Algorithm Testing Precision (%)
MNIST [14] Deep QCNN 98.97
GTSRB [14] Deep QCNN 91.40
MNIST [15] QGAN 87.50

Fashion-MNIST [15] QGAN 93.16
IRIS [16] QMC 92.10
BNA [16] QMC 89.50
WIL [16] QMC 91.73
IRIS [17] QNN 96.66

PlanePoint [17] QNN 96.82

benchmark datasets, as summarized in Table I. Notably, the
observed performance of QML algorithms appears promising,
with none achieving less than 87% accuracy. This suggests
that QML holds significant potential to compete with classical
methods in practical applications.

Despite the promising advancements in QML, the lack of
reliable quantum computers has hindered thorough testing of
various methods across diverse benchmarks, leading to uncer-
tainty regarding their anticipated performance. For instance,
multiple proposed algorithms for the quantum perceptron (QP)
employ vastly different approaches to data and weight encod-
ing/manipulation [9], [18]–[21], complicating comparison and
evaluation. Moreover, while even basic forms of classical ma-
chine learning remain unimplemented on quantum computers,
these methods often operate on boolean or pseudo-boolean
values, lacking intuitive extensions to real-valued numbers.

Furthermore, QML algorithms frequently prioritize perfor-
mance on harder datasets as a measure of increased express-
ibility, neglecting exploration of their efficacy on easier or
medium difficulty datasets. This oversimplification regarding
the ability of QML algorithms to capture dataset relationships
overshadows classical options. While some instances demon-
strate QML methods outperforming classical ones, this does
not imply a consistent advantage. The generalizability of per-
formance is just one of the factors contributing to the delay in
QML applications for real-world problems. Several surveys of
QML methods [6], [13] have highlighted potential limitations
common quantum classification methods may encounter, as
summarized in Table II.

Developing theoretical QML algorithms capable of harness-
ing quantum properties for a general advantage necessitates
further investigation. Tackling these challenges presents sub-
stantial theoretical and practical obstacles. Nonetheless, sur-
mounting them is crucial to unlocking the complete potential
of QML. One strategy to accomplish this is to meticulously
adapt established classical algorithms for implementation on
quantum computers. This adaptation allows for their integra-
tion with novel quantum techniques.
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